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ABSTRACT

State-of-the-art neural language models represented by Transform-
ers are becoming increasingly complex and expensive for practical
applications. Low-bit deep neural network quantization techniques
provides a powerful solution to dramatically reduce their model size.
Current low-bit quantization methods are based on uniform precision
and fail to account for the varying performance sensitivity at differ-
ent parts of the system to quantization errors. To this end, novel
mixed precision DNN quantization methods are proposed in this pa-
per. The optimal local precision settings are automatically learned
using two techniques. The first is based on a quantization sensitivity
metric in the form of Hessian trace weighted quantization perturba-
tion. The second is based on mixed precision Transformer architec-
ture search. Alternating direction methods of multipliers (ADMM)
are used to efficiently train mixed precision quantized DNN systems.
Experiments conducted on Penn Treebank (PTB) and a Switchboard
corpus trained LF-MMI TDNN system suggest the proposed mixed
precision Transformer quantization techniques achieved model size
compression ratios of up to 16 times over the full precision baseline
with no recognition performance degradation. When being used to
compress a larger full precision Transformer LM with more layers,
overall word error rate (WER) reductions up to 1.7% absolute (18%
relative) were obtained.

Index Terms— Language models, Speech recognition, Trans-
former, Quantization, ADMM

1. INTRODUCTION

Deep Transformer models in recent years have defined state-of-the-
art language modelling performance across a range of applications
including automatic speech recognition (ASR). The Transformer
model architecture features a deep stacking of multiple self-attention
layers [1, 2, 3] with residual connections [4] and layer normaliza-
tion [5] Additional positional encoding layers [6, 7] can be used
to further augment the self-attention layers with sequence order
information. Performance improvements over the conventional
long short-term memory recurrent neural network (LSTM-RNN)
language models have been widely reported [8, 9]. However, the
deeper architecture design of Transformers not only leads to a large
increase in overall system complexity, memory footprint and compu-
tational cost when operating on the cloud, but also creates difficulty
when deploying them on edge devices to enhance privacy and reduce
latency, in common with many other computational intensive deep
learning applications that are currently facing similar challenges.

To this end, one powerful solution recently drawing increas-
ing interest in the machine learning and speech technology com-
munity is to use low-bit deep neural network (DNN) quantization
techniques [10, 11]. By replacing floating point weights with low
precision values, for example, binary numbers, quantization can dra-
matically reduce the model size without modifying the network ar-

chitecture [12, 13, 14]. Further model size reduction can be obtained
when low-precision quantization is used in combination with neural
architecture search (NAS) methods, for example, in the SqueezeNet
system [15]. In contrast to the extensive research works on low-bit
quantization methods conducted on computer vision tasks [16, 17],
only limited previous research in this direction has been conducted
in the context of language modelling [18] and ASR systems.

Two issues are associated with current low-bit DNN quantiza-
tion methods. First, these quantization approaches are predomi-
nantly based on uniform precision, where an identical bit-width is
applied to all weight parameters for quantization. This fails to ac-
count for the varying performance sensitivity at different parts of the
system to quantization errors. In practice, this often leads to large
performance degradation against full precision models. Second, gra-
dient descent methods and back-propagation (BP) algorithm cannot
be directly applied in quantized model training when the weights are
restricted to discrete values. Existing methods of training low-bit
quantized DNNs often use a modified BP algorithm [19, 20], where
low precision quantized parameters were first used in the forward
pass to compute the error loss before full precision parameters are
used in the backward pass to propagate the gradients for model up-
date. However, the direct use and estimation of quantized weights in
these methods leads to very slow convergence in training, while the
performance gap against full precision models remains.

In order to address these issues, novel mixed precision DNN
quantization methods are proposed in this paper to address this prob-
lem by applying locally variable bit-widths to individual components
of the system. These methods are becoming well supported by the
recent development of mixed precision DNN acceleration hardware
that allow multiple locally set precision settings to be used [21]. The
resulting flexibility can provide a better trade-off between compres-
sion ratio and accuracy performance target. The optimal local pre-
cision settings are automatically learned using two techniques. The
first is based on a quantization sensitivity metric in the form of Hes-
sian trace weighted quantization perturbation. It can be efficiently
computed using Hessian-free approaches. The second is based on
mixed precision Transformer architecture search.

In order to overcome the difficulty in using gradient descent
methods to directly estimate DNNs of discrete quantized weights,
alternating direction methods of multipliers (ADMM) are proposed
to efficiently train mixed precision quantized DNN systems. Exper-
iments conducted on multiple tasks: Penn Treebank (PTB), Switch-
board (SWBD) suggest the proposed mixed precision Transformer
LM quantization techniques achieved a model size compression ra-
tio of up to 16 times over the full precision baseline with no recogni-
tion performance degradation. Moreover, by applying quantization
to a more complex Transformer LM with more layers, we can get
overall WER reduction up to 1.7% absolute.

The main contributions of this paper are summarized as fol-
lowing. First, to the best of our knowledge, this paper is the first
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work to apply mixed precision quantization methods to Transformer
language models. In contrast, previous researches on low-bit quan-
tization focused on convolutional neural networks (CNNs) [22]
and LSTM-RNN LMs [23], where expert designed special partially
quantized linear layers containing binary weight matrices, full pre-
cision bias and additional scaling parameters were used mitigate the
performance degradation due to uniform precision quantization.

The rest of the paper is organized as follows. Transformer LMs
are reviewed in section 2. A general neural network quantization
scheme and uniform quantization are presented in section 3. Section
4 presents our mixed precision quantization methods in details. Ex-
periments and results are shown in section 5. Finally, conclusions
and future work are discussed in section 6.

2. TRANSFORMER LMS

The Transformer model architecture considered in this paper feature
a deep stacking of multihead attention followed by feedforward lay-
ers. Residual connections and layer normalization are also inserted
between them as in the top part of figure 1. The l-th Transformer
layer transforms the input xl−1 at t time step as follows:

ql
t,k

l
t,v

l
t = Qxl−1

t ,Kxl−1
t ,Vxl−1

t (1)

hl
t = (hl

t−1, (k
l
t,v

l
t)) (2)

yl
t = Wl

hSelfAttention(hl
t,q

l
t) + xl−1

t (3)

zlt = LayerNorm(yl
t) (4)

where Q,K,V are the query, key, value projection matrices. hl

stores the history information in the l-th self-attention layer. (, ) de-
notes vector concatenation operation. SelfAttention(·) is the scaled
multi-head dot product self-attention machanism and Wl

his the pro-
jection matrix. LayerNorm(·) is the layer normalization.

The feed-forward layer at time step t is:

slt = Wl
2GELU(Wl

1z
l
t + bl

1) + bl
2 + zlt (5)

xl
t = LayerNorm(slt) (6)

where Wl
1 and Wl

2 are the weight matrices and bl
1 and bl

2 are the
corresponding bias. GELU(·) represents the Gaussian error linear
unit [24]. In addition, we also use positional embedding layer in the
transformer LMs.

3. NEURAL NETWORK QUANTIZATION

For a standard n-bit quantization problem of neural networks, we
consider a full precision weight parameter θ and find its clos-
est discrete approximation from the following quantization table
q ∈ {0,±1,±2, . . . ,±(2n−1 − 1)} as

f(θ) = arg min
q
|θ − q| (7)

1 bit is reserved to denote sign bit. With further simplification, ex-
tremely low bit quantization, for example, binarization {1,−1} [25,
26] and ternary {−1, 0, 1} [27], can be produced.

Applying quantization to all weight matrices in the model, we
can use a more general format in equation (7) to represent the quan-
tization for each parameter. Let θ(l)i be the ith parameter within any
of the lth weight cluster, for example, all weight parameters of the
same layer,

f(θ
(l)
i ) = arg min

Q
(l)
i

|θ(l)i −Q
(l)
i | (8)

The locally shared lth quantization table is given by

Q
(l)
i ∈ {0, α

(l), . . . , α(l)(2n−1 − 1)} (9)

where α(l) is a full precision scaling factor used to adjust the dy-
namic range of all the unquantized weights in the cluster. It is shared
locally among weight parameters clusters. A special case, when the
local quantization table in equation (8) is shared across all the lay-
ers, leads to the traditional uniform precision quantization approach.
The only remaining factor affecting the system performance is the
bit length #bit which is also globally set to be 1, 2, 4, 8 etc.

4. MIXED PRECISION TRANSFORMER QUANTIZATION

This section presents three mixed precision based Transformer LM
quantization approaches.

4.1. ADMM Based Mixed Precision Quantization

One major challenge faced by both uniform and mixed preci-
sion quantization is that the gradient descent methods and back-
propogation (BP) algorithm can not be directly used when weights
are quantized to discrete values. To this end, mixed precision BP
was proposed later in [20] where low precision binarized parameters
were first used in the forward pass to compute the error loss before
full precision parameters are used in the backward pass to propagate
the gradients. However, directly training quantized system using
mixed precision BP leads to very slow convergence and the perfor-
mance gap between full precision and quantized systems remains
large. An alternative solution to this problem is to reformulate quan-
tization as a constrained optimization problem implemented solved
by the alternating direction methods of multipliers (ADMM) [28].
It was initially used to in [29] learn the global quantization table in
equation (8) where α is shared among all the parameters.

In order to account for the locally varying performance sensitiv-
ity, ADMM was used in our earlier research [30] to learn the local
quantization tables in equation (8). This allows ADMM to provide
a form of mixed precision quantization. However, the optimum lo-
cal quantization precision settings cannot be learned by ADMM and
must be manually set. These will be automatically learned in the
following two approaches of Sections 4.2 and 4.3.

4.2. Minimum Sensitivity Based Mixed Precision Quantization

Assuming the parameters of a neural network is twice differentiable
and converged to a local optimum, it was proved in [16] that the ex-
pected performance loss, when using a given quantization precision,
is expressed in the form of Hessian trace weighted squared quanti-
zation error. In simple terms, for each cluster of weight parameters,
given the same amount of weight perturbation resulted from quanti-
zation, the smaller the associated Hessian matrix trace, the lower the
performance sensitivity to quantization.
For any quantization Q(·) being applied to the network parameters
W, the total performance sensitivity can be represented by the fol-
lowing sum of Hessian trace and squared quantization perturbation
error.

Ω =

L∑
i=1

Ωi =

L∑
i=1

T̄ r(Hi) · ||Q(Wi)−Wi||22 (10)

Given a target average quantization precision, the local quanti-
zation bit widths used in each layer should be selected such that the
above total performance sensitivity is minimized. In practice, this re-
quires transformer LMs using uniform precision, for example 1-bit,
2-bit, 4-bit and 8-bit be separately trained off-line first via ADMM

7384

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 16,2022 at 07:33:13 UTC from IEEE Xplore.  Restrictions apply. 



Embedding

Positional 
Encoding

+ …

Multihead
Attention /Feed

Forward
Multihead
Attention /Feed

Forward
FC/softmax

…

1-bit

2-bit

4-bit

8-bit

1-bit

2-bit

4-bit

8-bit

… …

1-bit

2-bit

4-bit

8-bit

1-bit

2-bit

4-bit

8-bit

…

Ω"#$ = 8.8 ∗ 10+, < Ω..$ = 3.6 ∗ 10+1 Ω"#2 = 0.31 > Ω..2 = 1.3 ∗ 10+4

56 = 78 96 : ||< =6 −=6||??

Transformer LM

Fig. 1. An example of auto-configured mixed precision quantiza-
tion of a transformer LM using a minimum performance sensitiv-
ity measure. For the first transformer module positioned right af-
ter the embedding and position encoding layer, its multi-head atten-
tion layer (green) is uses binary quantization while its feed forward
layer (orange) uses 4-bit quantization precision, as determinted by
the Hessian-trace weighted quantization sensitivity measure.

optimization in Section 4.1. The performance sensitivity in equation
(9) can then be computed locally for each layer using each quantiza-
tion choices before taking the sum.

For larger transformer LMs containing millions of parameters,
and many large deep neural networks in general, directly computing
the Hessian matrix and its trace is infeasible. In order to handle this ,
an efficient stochastic linear algebra approach based on the Huchin-
son’s Algorithm [31] is used to approximate the Hessian trace,

Tr(H) ≈ 1

m

m∑
i=1

zTi Hzi (11)

where the expensive matrix multiplication between H and zi in
the above approximation can be avoided, and efficiently computed
using Hessian-free approaches [16]. zi is a random vector sampled
from a Gaussian DistributionN (0,1).

An example application of the minimum performance sensitiv-
ity based mixed precision quantization of two layers within a Trans-
former LM is shown in figure 1 (residual connection and normallza-
tion are omitted for brevity).

4.3. Architecture Search Based Mixed Precision Quantization

An alternative solution to automatically determine the suitable local
quantization precision settings is to use mixed precision neural ar-
chitecture search (NAS) [32]. Inside a NAS super-network contain-
ing all possible Transformer architectures with varying precision bit
widths, the differentiable architecture weights [33] associated differ-
ent precision settings can be automatically learned inside the super-
network together with the normal Transformer parameters.

Instead of selecting over heterogeneous neural building struc-
tures as considered in conventional NAS applications, now for trans-
former LM quantization purposes, different neural building blocks,
for example, Transformer modules of different bit-widths are consid-
ered. This major difference requires the associated mixed precision
quantization super-network to be specially designed. Such super-
network is constructed by first separately training transformer LMs
using uniform precision, for example 1-bit, 2-bit, 4-bit and 8-bit, us-
ing ADMM optimization, before connecting these uniform precision
quantized Transformer LMs at each layer, where the system specific
activation outputs are linearly combined using a set of quantization
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Fig. 2. An example of auto-configured mixed precision quantiza-
tion of a transformer LM using mixed precision architecture search.
For the first transformer module, its multi-head attention layer is
uses 2-bit quantization (green) given the associated selection weight
of 0.6 while its feed forward layer uses 4-bit quantization precision
(orange) given the associated selection weight of 0.5, as the 1-best
choice selected from the mixed precision NAS super-network.

precision selection weights ({α(l,i)} in equation (12)). An exam-
ple of such mixed precision Transformer super-network is shown in
Figure 3.

In order to avoid the trivial selection of the longest, most gener-
ous quantization bit width, these precision selection weights learning
can be further constrained by a model complexity penalty in terms
of the number of bits retained after quantization. 1

L(θ) = f(θ) + β
∑
(i,l)

α(i,l) ·
√
||#bit||(i,l) (12)

where f(θ) is the standard cross-entropy loss.

5. EXPERIMENTS

In order to evaluate the performance of mixed precision quantized
Transformer LMs, an initial set of experiments on the Penn Tree-
bank (PTB) corpus are first presented in Section 5.1. The main set
of experiments conducted on a Switchboard (SWBD) corpus are pre-
sented in Section 5.2. All mixture precision quantized Transformer
LMs use layer level locally shared quantization tables with vary-
ing precision settings that are either manually in case of ADMM, or
learned by minimum performance sensitivity (MinSen) and mixed
precision neural architecture search (MPNAS) of Sections 4.2 and
4.3. Statistical significance test was conducted at level α = 0.05
based on matched pairs sentencesegment word error (MAPSSWE)
for recognition performance analysis.

5.1. Experiments on Penn Treebank Corpus

The PTB corpus uses a 10K word vocabulary. 930K words of text
data were used for training. 74K and 82K words of development and
test data sets were used.

There are several trend can be found in Table 2, given the same
quantization precision, for example, at approximately 2 bits, all the
mixed precision quantized models ADMM (line 7), MinSen (line
10) and MPNAS (line 11), consistently outperform the 2-bit uniform
quantization model in line 3. Second, among all the mixed precision
quantization methods, the lowest PPL of 56.82 is obtained using
MinSen with a quantization ratio of 10.2 times.

1The square root of #bit provides a smoothing effect on the precision sys-
tem complexity penalty term to avoid over-penalizing high precision settings
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Table 1. Performance of the baseline full precision, uniform precision quantized and layer level mixed precision quantized Transformer
LMs with local precision set either manually in ADMM, or automatically using MinSen/MPNAS of Sections 4.2 & 4.3 on Switchboard NIST
Hub5’00, RT02 and RT03. Evaluation time is computed over rescoring all the N-best lists.

models quant. quant. #bit PPL +4gram Hub5’00 WER(%) model comp. evaluation
precision method PPL rt02 rt03 swbd. callhm. size(MB) ratio time(s)

1 32 41.24 41.08 12.9 17.3 7.8 15.6 106 - 13.19
2

-

1 48.26 47.95 13.6 18.5 8.2 16.2 3.6 30.5 4.76
3 uniform 2 44.62 43.28 13.4 18.2 8.1 15.9 7.9 13.4 6.43
4 precision 4 43.83 42.97 13.2 17.8 8 15.7 14.1 7.5 6.89
5 8 43.72 41.36 13.0 17.4 7.9 15.8 27.2 3.9 7.12
6

ADMM

1 47.26 46.10 13.5 18.3 8.1 16.1 3.6 30.5 4.76
7 2 42.62 42.32 13.3 17.9 8.0 15.7 7.9 13.4 6.43
8 mixed 4 42.83 41.66 13.1 17.4 7.9 15.7 14.1 7.5 6.89
9 precision 8 42.72 41.21 13.0 17.4 7.8 15.8 27.2 3.9 7.12
10 MinSen 1.9 42.39 41.52 13.0 17.5 7.9 15.7 8.0 13.25 6.58
11 NAS. 2.5 42.75 41.96 13.2 17.8 7.9 15.8 9.1 11.65 6.80

Table 2. Perplexity (PPL), quantization bit length #bit, model
size and compression ratio of baseline full precision Transformer
(trans.), uniform and mixed precision quantized Transformer using
manual setting (ADMM), performance sensitivity based quantiza-
tion (MinSen) and architecture search based quantization (NAS)

models quant. quant. #bit PPL Model. Comp.
prec. meth. Size Ratio

1 32 55.26 66 -
2

-

1 82.10 2.3 28.7
3 uni. 2 58.94 4.6 14.3
4 prec. 4 56.86 9.4 7.0
5 8 56.80 17.0 3.9
6 1 65.41 2.3 28.7
7 ADMM 2 58.06 4.6 14.3
8 mixed (manual) 4 56.84 9.4 7.0
9 prec. 8 56.75 17.0 3.9
10 MinSen 2.0 56.82 6.5 10.2
11 NAS. 2.2 58.23 4.8 13.8

5.2. Experiments on Conversational Telephone Speech

The Switchboard I telephone speech corpus we use consists of ap-
proximately 300 hours of audio data released by LDC (LDC97S62).
The baseline GMM-HMM system with 6008 tied tri-phone states
was trained based on 40-dimensional Mel-frequency cepstral co-
efficients (MFCCs) to generate alignments for the neural network
training. LF-MMI trained TDNN[34] acoustic models with data
augmentation and i-Verctor adaptation [35] were used. Various
Transformer LMs trained on the Switchboard and Fisher transcripts
(LDC2004T19, LDC2005T19) was used to rescore the 4-gram LM2

produced N-best lists (N = 20). Their performance are shown in
Table 1.

Similar trends can be found in Table 1. First, given the same
quantization precision, for example at approximately 2 bits, all the
mixed precision quantized systems (ADMM, MinSen and MPNAS)
outperform the equivalent 2-bit uniform quantized systems in line 3.
Second, among the three mixed precision quantization approaches,
auto-configured quantization by MinSen or MPNAS outperform the
manual ADMM quantization using a comparable bit width of 2. In
particular, the 1.9 bit quantized MinSen model (line 10) outperforms
the comparable uniform precision (line 3) and manual ADMM quan-
tization (line 7) by 0.4 to 0.7 and 0.3 to 0.4 absolution on rt02 and

2the same 4gram LM was used in both the initial lattice and N-best list
generation stage, and subsequent N-best rescoring.

rt03 in a statistically significant manner. Finally, the evaluation time
is also halved against full precision baseline.

The advantages of mixed precision quantization are further
demonstrated when being used to compress a 16-layer larger Trans-
former LM (line2 in table 3), The 4-bit ADMM quantized model
produced the best performance, with a statistically significant WER
reductions of 1.7

6. CONCLUSIONS

This paper presents a set of novel mixed precision based Transformer
LM quantization techniques for the locally varying performance sen-
sitivity to the use of low-bit precision during model compression.
The optimal local precision settings are automatically learned by
either minimizing the performance sensitivity, or mixed precision
NAS. Experimental results conducted on state-of-the-art speech
recognition tasks suggest the proposed mixed precision quantization
methods outperform uniform precision based quantization, and can
produce large model size compression ratios of up to 16 times over
the full precision baseline with no performance degradation. Fu-
ture research will focus on improving mixed precision quantization
methods and their application to other ASR system components.

Table 3. Performance of the baseline 6 or 16 layer full precision,
and mixed precision quantized Transformer LMs with local preci-
sion set either manually in ADMM, or automatically using Min-
Sen/MPNAS of Sections 4.2 & 4.3 on Switchboard NIST Hub5’00,
RT02 and RT03.

models nlayers
quant. #bit PPL Hub5’00 WER(%)
meth. swbd. callhm. rt02 rt03

1 6 - 32 45.9 7.8 15.6 12.9 17.3
2 16 - 32 45.9 9.5 16.2 15.1 19.4
3

16

1 46.2 9.3 16.8 15.3 19.6
4 ADMM 2 45.7 8.1 16.0 14.7 18.7
5 (manual) 4 45.1 7.8 15.7 13.5 17.3
6 8 45.0 8.0 16.0 14.0 18.1
7 MinSen 2.8 45.3 7.8 15.8 13.9 17.7
8 NAS. 2.1 45.6 7.9 15.9 14.2 17.9
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